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this investigation was to study the post-impact fatigue response of these
material systems and to identify the optimum TTT fiber. Samples were
impacted with One half inch diameter aluminum balls with an average
velocity of 543 ft/sec. Post-impact static compression and constant
amplitude tension-compression fatigue t4sts were conducted. Fatigue tests
were conducted with a loading ratio of R=-5, and frequency of 4 Hz. Damage
growth was monitored using x-radiographic and sectioning techniques and by
examining the stress-strain response (across the impact site) throughout
the fatigue tests. The static compressive stress versus far-field strain
response was nearly linear for all material groups. All the samples had a
transverse shear failure mode. The average compressive modulus (from
far-field strain) was about i0 Msi. The average post-impact static
compressive strength was about 35.5 Ksi. The IM6 carbon sample had a
strength of over 40 Ksi, more than 16 percent stronger than average. There
was considerable scatter in the S-N data. However, the IM6 carbon samples
clearly had the best fatigue response. The response of the other
materials, while worse than IM6 carbon, could not be ranked definitively.
The initial damage zones caused by the impact loading and damage growth
from fatigue loading were similar for all five TTT reinforcing materials.
The initial damage zones were circular and consisted of delaminations,
matrix cracks and ply cracks. Post-impact fatigue loadingcaused
delamination growth, ply cracking and fiber bundle failures, typically 45
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deg from impact load direction. During the initial 97 percent of fatigue
life, delaminations, ply cracks and fiber bundle failures primarily grew
at and near the impact site. During the final 3 percent of life, damage
grew rapidly transverse to the loading direction as a
through-the-thickness transverse shear failure. The stress-strain response
was typically linear during the initial 50 percent of life, and stiffness
dropped about 20 percent during this period. During the next 47 percent of
life, stiffness dropped about 34 percent, and the stress-strain response
was no longer linear. The stiffness decreased about 23 percent during the
final 3 percent of life. These trends were typical of all the materials
tested. Therefore, by monitoring stiffness loss, fatigue failure could be
accurately anticipated.
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ABSTRACT

An experimental investigation of the post-impact fatigue response of integrally

woven carbon/epoxy composites was conducted. Five different through-the-thickness

(TTT) reinforcing fibers were used in an experimental textile process that produced an

integrally woven [01901019010190/019010].r ply layup with 21K AS4 carbon tow fiber. The

resin was Hercules 3501-6, and the five TTT reinforcing fibers were Kevlar, Toray

carbon, AS4 carbon, glass, and IM6 carbon. The purpose of this investigation was to

study the post-impact fatigue response of these material systems and to identify the

optimum TIT fiber.

Samples were impacted with one half inch diameter aluminumballs with an average

velocity of 543 ft/sec. Post-impact static compression and constant amplitude tension-

compression fatigue tests were conducted. Fatigue tests were conducted with a loading

ratio of R=-5, and frequency of 4 Hz. Damage growth was monitored using x-

radiographic and sectioning techniques and by examining the stress-strain response (across

the impact site) throughout the fatigue tests.

The static compressive stress versus far-field strain response was nearly linear for

all material groups. All the samples had a transverse shear failure mode. The average

compressive modulus (from far-field strain) was about 10 Msi. The average post-impact

static compressive strength was about 35.5 Ksi. The IM6 carbon sample had a strength of

over 40 Ksi, more than 16% stronger than average. There was considerable scatter in the

S-N data. However, the IM6 carbon samples clearly had the best fatigue response. The

response of the other materials, while worse than IM6 carbon, could not be ranked

definitively.

The initial damage zones caused by the impact loading and damage growth from

fatigue loading were similar for all five TTT reinforcing materials. The initial damage
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zoneswerecircular andconsistedof de]aminations,matrixcracksandply cracks.Post-

impactfatigueloadingcausedde]aminationgrowth,ply crackingandfiberbundlefailures,

typically 45= from impact load direction. During the initial 9"/% of fatigue life,

delaminations,ply cracksandfiber bundlefailuresprimarilygrewatandnee theimpact

site. During thefinal 3%of life, damagegrowrapidlytransversetotheloadingdirectionas

a through-the-thic]cqesstransverseshearfailure.

Thestress-strainresponsewastypicallylineE duringtheinitial 50% of life, and

stiffnessdroppedabout20% duringthisperiod. Duringthenext47% of life, stiffness

droppedabout34%, andthestress-strainresponsewasno longerlinear. Thestiffness

decreasedabout23% duringthe final 3% of life. Thesetrendsweretypical of a]! the

materialstested.Therefore,bymonitonngstiffnessloss,fatiguefailurecouldbeaccurately

anticipated.
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CHAPTER I

INTRODUCTIONAND BACKGROUND

Fiber-reinforced composite materials have advanced from novel materials to the

point where they are extensively used in the aerospace industry. Originally, experimental

materials were manufactured merely to determine their mechanical properties. Then,

composite parts were built and designed to replace metallic components. Recently,

numerous components (primarily on fighter planes) have been designed and fabricated to

take advantage of the anisotropic nature of fibrous composite materials. The current trend

has been to extend the application of fibrous composite materials to large cargo/transport

and new military cargo airplanes. Studies have shown that by the year 2000, composites

could account for more than half the structural weight of an aircraft [1].

Composites offer significant strength-to-weight improvements over conventional

materials, which could reduce the weight of transport aircraft by as much as 25% over

aluminum. This would result in a 12% to 15% reduction in fuel consumption or an

increase in payload [2]. Additionally, brittle fibrous composites can offer advantageous

stiffness-to-weight characteristics. However, brittle composites are extremely sensitive to

out-of-plane impacts. This has severely limited the application of these materials to the

aerospace industry. Therefore there has been a need for composites that are more tolerant

of impact damage. This need is being addressed by the development of tougher resin

systems and the use of 3-D fiber architecture. Both approaches offer much better damage

tolerance than first generation composites that were made with brittle matrices and no

through-the-thickness reinforcement.

Use of composites in aircraft require that impact damage tolerance and damage

growth in these composites be evaluated. Over the past two decades there have been

numerous studies concerning the mechanical response of composites subjected to impact
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loading. Throughout these studies, testing conditions have been varied to model different

impact and loading conditions typical of aircraft structural applications.

There have been several techniques used to create impact damage. The tests ranged

from high-velocity ballistic impact to low-velocity impact [3-20]. Depending on the impact

conditions, the damage may or may not be visually detectable. In addition to tests

evaluating the mechanical response of composites subjected to impact loading, there have

also been numerous projects evaluating the mechanical response of composites with

notches, surface scratches, and other flaws [21-33].

Composites have been impacted with a variety of impactor masses and geometries.

The impact devices have typically been either drop weight impactors or projectile

discharging air guns. Drop weight impactors have been used to imitate low-velocity

impact, such as manufacturing damage caused by tool impact. Projectile impact damage

generally replicates collisions incurredduring flight or during take-off or landing.

Regardless of the type of impact being modeled, changes in the mass or velocity of

the impactor significantly affect the size and subsequent growth of the damage zone.

Studies have been conducted using impact energy as the governing factor in the

characterization of damage and damage growth. However impact energy alone has been

demonstrated to be an inadequate parameter. The velocity and mass should both be

considered in the characterizationof impact damage [11]and damage growth [7].

DamageEvaluation

There have been various techniques used to evaluate and monitor damage in

composites. Laminates with notches, imbedded delaminations and impact damage have

been monitored to study damage growth and failure modes. Nondestructive evaluation

techniques offer the most practical and beneficial methods for monitoring flaws. The
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obvious advantage of this type of evaluation is that the nondestructive nature of the

techniques allows for continued testing of the samples.

Moir6-fringe patterns have been used to show out of plane deformations and plastic

zone growth in thin composite laminates [40], and scanning electron microscopy has been

used to examine fracture surfaces [9,30,31]. However, the primary nondestructive

techniques used for the evaluation of composites have been penetrant-enhanced

radiography and ultrasonic C-scanning.

Conventional radiographic procedures have shown poor flaw contrast in low-

density inhomogeneous composite materials [39]. This has lead to the development of

radio-opaque penetrants and low-kilovolt X-ray radiography procedures. Damage sites

have been injected with tetrabromoethane (TBE), diiodobutane, zinc iodide, and other

enhancing penetrants. These techniques have lead to the detection of matrix cracking, fiber

bundle fractures and delaminations [30-32].

Ultrasonic inspection techniques are more widely used inasmuch as ultrasonic

technology has improved and become more available. This procedure involves the

emission of high-frequency sounds in periodic bursts from a transducer. The sound waves

travel through a coupling medium (typically water) and through the material, and the

resulting pulse is monitored by a receiving transducer. Differences in peek amplitudes of

the ultrasonic waves transmitted through the material (C-scans) typically are due to

delaminations, porosity, or surface defects. However, both conventional C-scans and

radiography fail to give information regarding through-the-thickness distribution of

damage.

Sectioning has been used to monitor through-the-thicknessdamage. These sections

have been polished and examined using light microscopy [16,40]. This technique has been

used to detect delaminations and matrix cracks through-the-thicknessof the material.
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Compression of Damaged Composites

Much of the kinetic energy imparted during the impact event produces matrix

intraply cracking, fiber/matrix debonding, and interply delaminations in a composite

laminate. Delaminations reduce the laminate's compressive stability [29] and can greatly

diminish the in-plane compressive strength.

Impact damage, which may not be visually detectable, can cause local instability.

This can lead to a reduction in static compressive strength, because failure is typically due

to local buckling of the in-plane fibers [5]. Predominantly, composite compression tests

have been conducted which prevent column-type buckling. However, even when tested in

an apparatus designed to prevent macroscopic buckling, the region of weakness in a

composite can still delarninate and buckle locally [30].

This buckling failure mode often reduces the static compressive strength of a

material by as much as half of its undamaged strength. Avery and Porter [4] demonstrated

that both metal and fiber composite panels lose at least 50% of their undamaged strength

when impacted with small arms projectiles. Furthermore, Moon and Kennedy [16] found

that the compressive strength of a quasi-isotropic composite with low-velocity impact

damage was reduced to about one third of its original strength.

Statues et al. [40] studied successive moir6-fdnge patterns of laminates with low-

velocity impact damage. At 48% of the specimen residual strength, there was a small

circular region of local out-of-plane deformation at the original impact site. The fringe

patterns observed between 61% to 98% of the residual strength showed lateral growth of a

local buckling region as the load was increased. At 98%, the local buckling region was

elliptical, and the length of the major axis (perpendicular to the load direction) was about

twice the diameter of the impact site. Examination of the failed specimen confLrmed that the

damage was confined to a narrow region transverse to the loading direction.

Soutis and Fleck [30] used radiography and microscopy to study the static

compressive failure of a composite plate with a single hole. Initial damage in the laminate
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consisted of matrix cracking near the hole surrounded by delaminations. Microscopic

observations of Liu et al. [9] showed that there is an interaction between matrix cracking

and delamination. This damage occurs at the edge of the hole at locations of high in-plane

compressive stress. There is also fiber microbuckling that intensifies with increasing load

and is confined to areas subjected to high axial compressive stress. At ultimate load the

microbuckled zone propagates rapidly transverse to the load direction, and the composite

fails.

Microbuckling in the 0° plies is thought to be the critical failure mechanism, and

matrix splitting and delamination are thought to be secondary damage modes. Moreover,

fiber microbuckling can cause high interlaminarstresses that subsequently lead to additional

delamination growth [29]. Several studies have yielded the same conclusions about

damage growth and failure modes [3,24,32,33].

The introduction of stress risers, such as notches or impact damage, can lead to

damage growth and failure at lower load levels. The reduction of strength has been found

to be similar for composites with both notches and impact-induced damage. A drilled hole

(notch) was found to be about as detrimental to the strength of a composite as was an

impact event causing broken fibers on the surface [21].

Ramkumar [22] studied the effect of imbedded delaminations on compressive

failure modes of composite laminates. Imbedded delaminations located just below the 0°

surface ply allow large transverse deflections of the delaminated ply. These large

deflections cause matrix cracking between fibers. Circular imbedded delaminations induce

matrix cracking along 0° lines tangent to the initial circular geometry. Matrix cracks and

delaminations then grow in areas subject to high compressive stress, analogous to a

laminate with a circular hole. However, in contrast to other studies, Rarnkumar's

photomicrographs indicate the absence of fiber microbuckling. In all of these studies,

failure was found to propagate in an unstable manner.
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Stable damage growth is an obvious requirement for damage tolerant aircraft

structures. However, composites are non-homogeneous, and even microscopic

inconsistencies can lead to changes in damage propagation. Also, local delaminations

create local strain concentrations that may cause nominal failure strains below the failure

strain of the primary load-bearing plies [34]. Fiber and matrix cracks can also lower the

strain levels at which fiber microbucklinginitiates.

Since fiber microbuckling is evidently the critical failure mechanism, the strain level

at which fiber microbuckling initiates can be an important parameter in predicting

compressive strength. At least six factors have been identified which affect the strain levels

at which fiber microbuckling initiates: orientation of the supporting plies adjacent to the 0°

plies, effects of free surfaces, fiber/matrix interfacial bond strength, degree of initial fiber

waviness, thickness of resin-rich regions between the plies, and non-linear resin shear

constitutive behavior [33].

Post-Impact Fatigue

If an aircraft structure initially survives impact damage, it may remain in service.

The structure, therefore, must be able to withstand post-impact-fatigue loading by

maintaining a relatively high residual strength [4]. Consequently, damage tolerance and

durability concepts must be' developed and evaluated under simulated loading on

subcomponents of aircraft structures. Post-impact fatigue loading can be used as a

simplistic representation of actual loading on aircraft structural members. Therefore, the

post-impact fatigue response of composites can be important for the determination of their

applicability to aircraft structures.

Impact damage greatly reduces the fatigue life in composites. The fatigue response

of composites subjected to low-velocity impacts is typically less than the fatigue response

of composites with an open hole [8]. However, for many cases the residual static strength

after low level cyclic loading is greater than the post-impact static strength [28]. This event

is due to the redistribution of stresses in the composite [26]. Obviously, fatigue response
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of a composite depends on the severity of the impact event. Damage generally grows more

rapidly in composites with half-penetrationimpact damage than with full-penetration impact

damage.

Damage growth mechanisms and failure modes for fatigue loaded composites are

essentially the same as those for statically loaded composites. The failure modes due to

compressive fatigue loading are well represented by failure modes from static compression

tests. Interactions between matrix cracks and delaminations cause fiber microbuckling,

which is often considered the main failure mechanism.

The maximum compressive stressplotted versus the number of cycles to failure (S-

N curve) can be used to predict life for the given material and loading conditions.

Typically, the fatigue strength of an undamaged laminate drops sharply in the short life

region, as seen in Figure 1. However in the long life region (greater than 105 cycles), the

slope of the S-N curve approaches zero [16]. Similarly, the reduction of fatigue strength in

damaged laminates is greatest in the short life region. Interestingly, in the long life region,

the fatigue strength of laminates with initial damage is similar to the fatigue strength of

laminates with no initial damage [25].

In addition to actual damage growth, the fatigue response of a composite can also

be described by monitoring strain across the damage site. The stress-strain response for

one cycle of a fatigue test is shown in Figure 2. The secant modulus or stiffness for each

cycle is the slope of the line between the points of maximum stress and minimum stress.

As fatigue damage increases, in the form of matrix cracks and delaminations, stiffness loss

increases [35-36]. When the stiffness loss is severe, failure occurs. By monitoring

stiffness loss, failure can be predicted for the given material and loading conditions [37].

For an orthotropic fibrous composite lamina there are four in-plane independent elastic

constants that characterize material stiffness, assuming a plane stress state. Each constant

may change in a different way depending on the damage mode [35]. Therefore, changes in

all four independent tensor moduli interact in a complex manner to produce stiffness
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changes in a laminate [35]. Consequently, Johnson [38] introduced the unloading elastic

modulus as a more direct indicatorof fatigue damage.

Failure can also be predicted for the material and loading conditions by monitoring

the hysteresis energy throughout a fatigue test. The hysteresis energy, area enclosed by the

stress-strain curve for one cycle, increases as fatigue damage increases. This approach

may also be a more direct indicator of fatigue damage, because it does not appear to be

influenced by local buckling [16].

Fatigue Loading

Routine inspections are conducted to monitor damage growth in aircraft structural

members. The inspection intervals are based on expected damage growth for the given

material. If damage zones grow to the pre-determined critical damage length, the aircraft is

grounded for repair. Consequently, structural fatigue tests that simulate flight conditions

are required as part of the aircraft certification process. Fibrous composites must respond

well to fatigue loading to be a viable replacement for conventional materials. However, the

material response is dependent on the type of post-impact-fatigueloading.

The fatigue life and damage propagation in a material vary with the loading rate. In

general, composites loaded at higher frequencies survive more cycles to failure than

composites loaded at lower frequencies [29]. The main cause of this appears to be the

relation between frequency and dynamic modulus. Among material groups the initial

dynamic modulus varies with the log of the frequency. Also, low-frequency fatigue

loading produces more concentrated, local damage with greater damage-induced stiffness

reduction. High-frequency loading produces more dispersed damage with less stiffness

loss [45]. The author offers no explanation for this mechanicalphenomenon.

The material fatigue response is even more dependent on the loading ratio (R=

minimum load/maximum load). Generally, the loading becomes more harmful as the

amplitude of the maximum compressive load approaches the amplitude of the maximum

tensile load (as R approaches +1). Also, cyclic compressive loading is more damaging to
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composites than cyclic tensile loading [46]. Therefore R= -1 typically corresponds to the

harshest constant amplitude fatigue loading on composites.

MaterialBehavior

The arrangement of lamina in a fibrous composite laminate greatly affects the

material's impact response. Differences in ply orientation cause totally different failure

modes and failure loads [31]. The direction of the damage propagation depends on the

laminate's stacking sequence [23]. Additionally, damage zone size (from impact loading)

is typically smaller for thick laminates than thin laminates. However, for low impact

velocities, the size of the damage zones is not greatly affected by laminate thickness [12].

Even though the size of damage zone (from impact loading) can be dependent on laminate

thickness, it is more dependent on changes in the stacking sequence [11].

Improvements in impact damage tolerance have been made by altering the resin

systems in fibrous composites. The impact damage in composites made with tough resin

systems is much smaller than the damage found in composites made with brittle resin

systems [14]. This improvement has lead to improvements in post-impact compressive

strength over brittle resin systems [13]. However, tough resins are up to ten times more

expensive than brittle resins.

Through-the-thickness (TTT) reinforcing stitching offers an alternate approach for

improving the damage resistance of laminated composites. This type of reinforcement

constrains out-of-plane deformation and generally the greater the stitching density, the

smaller the area of delamination due to impact [30]. Liu [17] found that TT'F stitching can

reduce the delamination area in a plate subjected to low-velocity impact by as much as 40

percent.

Although TTT reinforcement reduces the damage zone size from impact loading,

compression-after-impact tests have produced varying results. Static compression and

fatigue tests on laminates with an open hole demonstrated strength reduction with the

addition of TTT stitching [20]. The use of TTT stitching can reduce the undamaged



12

compression strength of the material by 20 to 25 percent [18,19]. Chung et al. [43] found

that stitching through prepreg layers often results in in-plane fiber damage. Additionally,

Farley [42] hypothesized that waviness and "kinking" of in-plane fibers caused by the

inclusion of TTT reinforcement lead to the strength reduction. It was shown that the

surface loop of the TTT reinforcement "kinked" the in-plane fibers in the surface plies in

both the stitching and weaving processes. These "kinked" fibers were unable to carry

significant compressive loads.

By removing the surface loop and "kinked" fibers, the strength was increased by 7

to 35 percent [42]. Also by improving the material production process, in-plane stitching

damage and waviness due to TTT reinforcement could be reduced. Moreover, TTT

stitching (like tough resin systems) suppresses delamination propagation [14,43] and

usually slows the failure process. Therefore, as production processes improve, TTT

reinforcement should improve the damage tolerance and durabilityof the material systems.

Moon and Kennedy [16] showed that TTT reinforcement could be used instead of

tough resin systems to improve damage resistance and tolerance. Undamaged laminates

with TTT reinforcement had slightly higher compressive strengths than undamaged,

unstitched laminates made with the same uniweave cloth. The fact that these laminates

(with TIT stitching) responded better than those from earlier tests [18-20]was attributed to

improvements in material production. Stitching also improved the compression-after-

impact response for all stitching densities tested. Likewise, laminates with _ stitching

showed better post-impact fatigue response than unstitched laminates. Furthermore, dense

stitching offered post-impact fatigue improvementscomparable to tough resin systems.

ResearchObjective

These studies have shown that qTr reinforced composites have substantial potential

for use in aircraft structures. However, the post-impact fatigue response of integrally

woven TTT reinforced composites has not been adequately studied. Additionally, the

mechanical properties of the TTT reinforcing materials that contribute to improvements in
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damage growth tolerance have not been investigated. Therefore, this study was initiated to

determine the post-impact static compression and tension-compression fatigue response of

composites with five different TTT reinforcing materials. Damage growth during fatigue

tests was monitored using radiographic and sectioning techniques. Changes in average

strain across the impact site of each samplewas also monitored to anticipate fatigue failure.



CHAPTER 1I

EXPERIMENTALPROCEDURE

MaterialDescription

The materials evaluated in this study were integrally woven composite material with

TTT reinforcement, fabricated by Textile Technologies. The preform design was a nine

layer noncrimped preform with five layers oriented in the warp direction and four layers

oriented in the fill direction. The ply layup was [0190/0190/0/901019010]T.Both warp and

fill yams were 21K filament count AS4 carbon fibers. This 21K yam consisted of a

combination of AS4 sized 12K, 6K and 3K yams served together with a fine denier PVA

monofilament. The serving yam comprised less than one percent of the total fiber weight.

Each of the nine layers had thirteen 21K yams per inch without interconnection between

layers.

The inplane yams were held together with TTT reinforcement. Five different

reinforcements were used: Kevlar 29, 1500 denier; Toray carbon, T-1000; AS4 carbon,

9K; $2 75 1/3 glass (three yams twisted together); and IM6 carbon, 6K. The TTT yarns

originated from the upper and lower surfaces of the preform and looped around a catcher

yam. As shown in Figure 3, the catcher yam, AS4 carbon fibers, is located in the center of

the preform. The preform had _ reinforcement in both the warp and fill directions with

an approximate row spacing of 0.2520 inches and TTT penetration spacing of 0.1260

inches. The T'I'T yams in the warp direction were looped around catcher yam in the fill

direction, and TTT yams in the fill direction were looped around catcher yam in the warp

direction. A preform is shown in Figure 4. Hercules 3501-6 epoxy resin was infiltrated

into the preforms using a resin transfer molding (RTM) technique, and the materials were

cured in an autoclave [19]. The resin infiltration and materialcuring were performed at The

NASA Langley Research Center.
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Figure 3. Integrally woven 3-D architecture.
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Figure 4. Integrally woven preform (Kevlar_ reinforcement).
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The composite panels were produced in sixteen by fourteen inch panels, as shown

in Figure 5. The panels were cut into four inch wide by sixteen inch long samples with a

diamond tipped circular saw blade. The edges were cut parallel to the TTT reinforcement

surface loops on the top zero degree ply.

The thickness varied by as much as four percent across the width of a sample. The

average thickness of each sample was determined from the thickness at each edge of the

sample in the middle of test section. The average thickness among the five materials varied

significantly. However, there was little variation among each material group, as shown in

Table I.

Each sample was C-scanned with SONIX ultrasonic testing equipment to check for

material flaws. A 5 MHz transducer scanned each sample with 0.01000 inch scanning

increments. There were no significant flaws found in any of the tested samples.

ImpactDevice

The impact device consisted of a 0.50 caliber machine gun barrel pressurized with

nitrogen, as shown in Figure 6. Half inch diameter aluminum balls were loaded into the

barrel, and a tank of nitrogen was used to pressurize a plenum to 85 psi. A solenoid was

triggered to release the pressurized nitrogen through a half inch orifice into the barrel. A

counter at the end of the barrel was used to determine the velocityof each ball.

The counter consisted of two HAD-1000A photodiodes. The photodiodes were

separated by six inches. The time in which each ball traveled through this distance was

determined with a 500 KHz crystal oscillator (divided from 1MHz). The velocity (ft/sec)

was given by dividing 250,000 by the number of oscillations. The uncertainty in this

experimental set-up was about 0.27%, or 1.5 ft/sec.

Each sample was impacted at the geometric center. The average velocity was 543.4

ft/sec with a standard deviation of 7.3 ft/sec. During impact, the ends of each sample were

held in place with the hydraulic grips of the testing machine. Approximately ten inches of

each sample was unconstrained, and the front face of each sample was approximately one
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Figure 5. Integrallywovencarbon/epoxy16"by 14"compositepanel(KevlarTIT
reinforcement).
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Table I. Sample Thicknesses

TIT Reinforcement AveraGeThickness (in) StandardDeviation

Kevlar 29 0.249 0.006

Toray Carbon 0.247 0.003

AS4 Carbon 0.292 0.005

$2 75 1/3 Glass 0.246 0.006

IM6 Carbon 0.274 0.007

Totals 0.262 0.019
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Figure 6. Impact device.
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foot from the end of the gun barrel. In order to slowthe ball after rebounding off the

sample,foamrubberwas attachedaroundtheendof thebarrel.

Static Compression Tests

Static compression tests were conducted on one sample from each of the five TIT

reinforcement groups. Ten inch knife edge side supportswere used to simply support the

sides of each specimen, as shown in Figure 7. The supports prevented global buckling.

Teflon strips, 0.060 inches thick and 0.400 inches wide, were used to prevent fretting of

the samples at the knife edges.

Each sample had one strain gage on the front and one on the back, 2.5 inches below

the impact site, as shown in Figure 8. To prepare each surface for the strain gage, a

nominal 0.050 inch by 0.025 inch area was sanded with a coarse 80 grit paper at the

location of each gage. Each surface was then wet sanded with 320 grit paper and a water-

based acidic surface cleaner. Next, a water-based alkaline surface cleaner was used to

clean the surfaces. Each gage was then coated with a catalyst, glued to the surface with a

cyanoacrylate adhesive, and coated with polyurethane.

The front and back strain gages were aligned in the loading direction to determine

uniaxial strain. The gages were Micro-Measurementsprecision strain gages, type CEA-06-

250UW-350 (0.250 inch gage length, 350 ohms resistance). The gages were connected in

a full Wheatstone bridge circuit. A Vishay Instruments Bridge Amplifier and Meter were

used for bridge completion and amplification. The analog output was connected to a

Metrabyte STA-20 analog and digital interface board to supply the average strain data.

Compression tests were conducted on the 56 kip servo-hydraulic Instron 1332 load

frame with an Instron 8500 series electronic controller shown in Figure 9. Hydraulic grips

were used to exert pressure on four inch by three inch aluminumtabs which were mounted

to the ends of each sample. The grip pressure was set at 3000 psi. The samples were

tested to failure under load control at a rate of 5.0 kips/min., which produced a

corresponding strain rate of approximately 0.0005 per minute.



Figure 7. Side supports. 
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Figure 8. Location of strain gages on static compression samples.
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Figure 9. Instron load frame and electronic controller.



25

Labtech Notebook data acquisition and process control software package, version

4.26, were used to collect the raw data with an IBM PC. The instrument outputs were

acquired with the Metrabyte board. The Instron electronic controller provided the output

for the load data. The data were sampled at a rate of one cycle per second, thus producing

load and strain readings every 83 pounds.

Post-ImpactFatigueTests

To prepare the samples for fatigue testing, extensometer tabs were mounted above

and below the damage sites on both sides of the samples. The extensometer tabs were

machined from 0.125 inch thick aluminum. Each tab was 0.200 inches high and 0.450

inches wide at the base, as shown in Figure 10. The top of each tab was 0.800 inches

wide and had a 0.025 inch deep groove to hold the extensometer knife edges. The surfaces

of the composites were prepared for bonding tabs using a procedure similar to that used for

the application of strain gages. A nominal 0.50 inch by 0.75 inch area was sanded with a

coarse 80 grit paper at the location of each tab. Each surface was then wet sanded with 320

grit paper and thoroughly cleaned with a water-based alkaline surface cleaner. Each tab

was degreased using 1-1-1Trichloroethane.

The tabs were mounted one inch above and one inch below the center of the impact

site on each side of the samples. The tabs were bonded to the samples with Hysol EA

9309 NA two part epoxy adhesive. The adhesive was allowed to cure for at least 24 hours

before testing. The adhesive effectively held the tabs in place; the adhesive never failed

prior to the sample failing.

Instron extensometers, shown in Figure 11, were attached to the front and back of

each sample. The knife edges of the extensometers were attached to the tabs, as shown in

Figure 12, with GB Electrical nylon cable ties. Extension over both sample faces was

monitored throughout the tests to provide informationabout out-of-plane deformation.

The front extensometer, Instron catalog number 2620-828, had a range of _+0.05
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Figure 10. Geometry of extensometer tabs.



~ Figure 1 1 .  Extensometers. 
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Figure 12. Extensometer attached to tabs mounted acrossimpact siteon sample.
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inches. The back extensometer, Instron catalog # 2620-830, had a range of + 1 millimeter.

Every sample failed before either extensometerexceeded its range.

The front extensometer was connected to the Instron electronic controller. The

analog output from the controller was connected to the Metrabyte board. The back

extensometer was connected to a Vishay Instruments Group 2310 Signal Conditioning

Amplifier, serial number 093787. The excitation voltage was input to the 25 pin

extensometer connector at pins 1 and 2, plus and minus respectively. The output signal to

the amplifier came from pins 14 and 15, minus and plus respectively. The excitation

voltage was set at one volt DC with a gain of 3700. The output from the amplifier was also

connected to the Metrabyte board. There was some interference in this signal. The "noise"

caused variations in the output voltage of about _+0.005volts. This caused strain variations

of about +10 microstrain, or about _+0.1%of the maximum compressive strain at fatigue

failure.

The extensometers were calibrated with a Romford Essex T18-18 super

micrometer. Each extensometer was attached to the super micrometer with rubber bands.

The extensometer voltages were monitored with the Labtech Notebook data acquisition

software. Each extensometer was calibrated according to guidelines presented in ASTM

Standard Practice Verification and Classification of Extensometers (E83) [44]. Each

extensometer had a B-1 classification. [44]

Fatigue tests were conducted using the same 56 kip servo-hydraulic Instron load

frame and test set-up used for compression testing (except extensometers were used and

strain gages were not), as shown in Figure 13. The data acquisition system was capable of

reading voltage accurate to _+0.0005volts. Therefore, load readings could be measured in

27 pound increments, and strain could be measured in increments of 1micro strain.

The loading wave form was sinusoidal, as shown in Figure 14, with a loading ratio

R= -5. Each sample was tested at a frequency of 4 Hz. The maximum compressive load

for each sample was chosen as a percentage of the static compressive strength for each
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II

Figure 13. Instron load frame and electronic controllerwith sample mounted for fatigue
test.
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Figure 14. Load cycle for fatigue tests (R= -5.0, frequency= 4 Hz).
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material. Percentages ranged from approximately 55% to 80% of the static strength.

Samples that survived one million cycles in a fatigue test were considered to have achieved

infinite life.

Limits were set on the electronic controller to stop the loading immediately after

failure. Limits were set on the extension of the front extensometer, position of the cross-

head, load on the sample, and number of fatigue cycles. To protect the extensometers, the

tests were stopped when the maximum negative extension of the front extensometer

reached -0.040 inches.

Data was collected with the Labtech Notebook data acquisitionsystem at a sampling

rate of 600 Hz for one half second. Three BASIC programs, written by the author, were

used to trigger the data acquisition system at points of interest during each fatigue test.

"GetTimes" was used to enter the times when data points needed to be recorded, and these

times were written to a file on the computer's hard drive. Then, "Timer2" was used to

record data at the given points. At each point, two cycles of fatigue data were written to a

hard drive. These data were then merged with the previously acquired data on a floppy

disk. Up to 75 data points were stored on each 1.6MB floppy.

Typically, several data points (sampling every 100 to 400 cycles) were recorded

early in a fatigue test, and several were recorded toward the end. Fewer points (sampling

every 2000 to 25,000 cycles) were recorded in the middle of a fatigue test. The maximum

negative extension of the front extensometerwas monitored to determine when each sample

was near failure. When this extension began to rapidly increase, many of the tests were

paused. At that point, "EndTimer" was used to record the data for every cycle until failure.

One hundred and sixty cycles were recorded on each floppy.

After each fatigue test, the raw data were analyzed with four PASCAL programs.

Each data point consisted of one half second or two cycles of data. However, data were

not necessarily recorded starting at the beginning of a cycle. Therefore, each program read

the data at each point from the floppy disks and truncated the data set to one full cycle.
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This cycle was then analyzed to determine the maximum and minimum strains, secant

modulus (stiffness), hysteresis, loading modulus, unloading modulus, and out-of-plane

deformation.

"Crunch" was used to analyze each cycle of data from "Timer2." "EndCrunch"

was used to analyze each cycle of data at the end of the fatigue tests from "EndTimer."

"Evaluate" was used to analyze one particular data point, and it gives all the stress and

strain values for the given cycle from "Timer2." Likewise, "EndEvaluate" was used to

analyze one data point at the end of a fatigue test from "EndTimer." The programs

mentioned in previous paragraphs are included in the "User's Guide for Collecting Data

from Fatigue Tests", Department of Mechanical Engineering report number TR-94-137-

ME-AM.

Evaluationof Damage

Radiography

In addition to quantitatively monitoring damage growth with stiffness loss, X-

radiographic techniques were used to document damage. Ten fatigue samples were

evaluated, two from each TTT reinforcement group. The strain across the impact site on

the front face of each sample was monitored in order to regulate damage growth. The

fatigue tests were interrupted and samples were evaluated at predetermined levels of

compressive strain across the damage zone on the front face. Each sample was evaluated

after impact, at a maximum compressive strain of 0.005, at a maximum compressive strain

of 0.007, and immediately prior to failure (typically at a maximum compressive strain of

about 0.010).

Damage was monitored using an X-ray opaque dye. The dye consisted of 60 g zinc

iodide, 10 mL water, 10 mL isopropyl alcohol, and 1 mL photo-flow. The dye was

injected into surface cracks while the specimen was under a static tensile load of

approximately four kips. The dye was allowed to soak for approximately five minutes

before the sample was removed from the testing machine. Additional dye was then allowed
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to soak through-the-thickness of the specimen for approximately ten minutes before the

excess dye was wiped off the specimen face.

Type 55 Polaroid film was mounted approximately one quarter inch from the back

face of the specimen, over the damage zone. A Philips (type number 9421 070 01202) K

140 Be tubehead was placed about six inches from the front face of the specimen. The

tubehead was controlled with a Philips 220 Kv 50/60 Hz standard control box, type

number 9421 070 17112. The film was exposed to a 37 Kv x-ray flux for three minutes.

Sectioning

Ten samples were sectioned to evaluate impact and fatigue damage. The five

samples (one from each material group) fatigued nearly to failure, which were

radiographed, were cross-sectioned. Five impacted samples (one from each material

group), with no static or fatigue loading, were also evaluated. Each sample was cut parallel

to its sides, as shown in Figure 15, and wet-sanded with 240, 320, 400, and 600 grit

paper. The samples were then photographed and examined under a microscope.
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Figure 15. Location of sectioning cuts.



CHAPTER KI

RESULTS

Discussion of Post-Impact Loading

The FAA and Department of Defense require that aircraft structures survive one

lifetime without detectable damage from normal in-service use. Therefore, aircraft

structural members that sustain damage (that may not be visually detectable) from impact

loading must be able to maintain structural integrity under subsequent loading. Post-impact

loading experienced by aircraft structural members must be simulated to study material

response so that the structure can be confidently designed and certified. However,

different components are subjected to different post-impact loading conditions. Likewise,

different regions of the same component are subjected to different loading conditions. For

example, the top surface of a wing, outboard of the landing gear, experiences maximum

tensile loading when the fully-fueled aircraft is taxing. During flight this surface undergoes

compressive loading, primarily.

This research was conducted to study the response of carbon/epoxy composites

with different integrally woven TTT reinforcements to post-impact fatigue loading. The

'I"FTreinforcing fibers were Kevlar 29, 1500 denier; Toray carbon, T-1000; AS4 carbon,

9K; $2 75 1/3 glass; and IM6 carbon, 6K. The TTT reinforcement was integrally woven

with 21K AS4 carbon tow fiber. The experimental textile process produced composites

with a [01901019010/901019010]Tply layup. Specifically, these tests were conducted to

study the behavior of integrally woven composites under simulated aircraft loading

conditions and to determine which of the tested TTT reinforcing fibers is the best. This

laminate configuration would probably never be used in an aircraft structural member,

because it contains only 0° and 90* plies. However, the experimental textile process
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provides low cost model materials that can be used to evaluate different TTT

reinforcements.

The composites were impacted to produce intermediate-velocity, low-mass impact

damage. The composites were then loaded in both static compression and tension-

compression fatigue to failure. The static tests were conducted to determine mechanical

properties and to observe the compressive failure modes. These tests also established a

baseline for determining the load ranges of the fatigue tests.

The fatigue loading conditions were chosen as a simplifiedrepresentation of loading

experienced by the top surface of a wing (outboard of the landing gear). The magnitude of

the compressive load during normal flight is about twice the magnitude of the tensile load

when the aircraft is on the ground. The wing experiences variable amplitude loading

during flight and may reach limit loads in tension or compression. Limit tensile load is

about the same as the load experienced when the fully fueled aircraft is taxing. Limit

compressive load is about five times the magnitude of limit tensile load [47]. Therefore,

the loading ratio of R= -5.0 (maximum compressive load five times maximum tensile load)

was chosen because it represents one tension-compression limit load cycle. It also

represents the harshest compressive loading a wing could experience during one ground-

air-ground cycle. Additionally, there is little difference in fatigue response for loading

ratios between R= -2 (representative of normal flight) and R= -5 [47].

Since a wing seldom experiences limit loading, and a ground-air-ground cycle

represents an entire flight, one million cycles was considered infinite life. The loading

frequency of four hertz was chosen to produce low-frequency effects in a reasonable time

frame.

The fatigue tests were conducted to determine the relationship between maximum

compressive fatigue stress and specimen life. X-radiography and sectioning were used to

monitor damage zone growth. The stress-strain response of the materials at individual
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cycles during fatigue tests was monitoredas an indicatorof damage and to anticipate

specimenlife.

ImpactDamage

The size and shape of the damage zones caused by impact were observed using x-

radiographic and sectioning techniques. Post-impact radiographs of one sample of each

material are shown in Figure 16. The black and gray regions represent damage. The light

gray regions do not represent damage; this was apparently caused by the dye being

absorbed by the TIT reinforcing fibers. The samples were typically soaked with dye only

near the damage zone. Therefore, these light gray regions surround the damage zones.

The radiographs showed larger, less-pronounced damage zones in the IM6 carbon

and AS4 carbon samples than the other materials. This may have been caused by variations

in sample thickness; the AS4 carbon and IM6 carbon samples were the thickest. The x-ray

exposure time and intensity were the same for each sample. Therefore, the thicker samples

produced a general view of the damage zone, while the thinner samples produced more

detail of cracks and delaminations. Also, it was often difficult to inject dye into surface

cracks; some samples absorbed more dye than others. The glass sample, for example,

appeared to have very little impact damage. Yet, with the use of sectioning (to be discussed

later), the amount of damage was found to be similar for each sample. Therefore, these

differences in the initial damage zones were probably merely artifacts of the radiographic

process and do not represent differences in the actual damage states.

Variations in thickness and problems with dye absorption made it difficult to

establish differences in size and shape of the damage zones. However, each sample had a

nearly circular damage zone. Also, the radiographs showed more damage slightly away

(about 1/8 inch) from the center of the impact site.

Each sample was cross-sectioned (cut and polished) at four locations and viewed

under a microscope, as shown in Appendix B. At the impact site there were many matrix

cracks, ply cracks and delaminations, as shown in Figure 17. The matrix cracks were
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a. Kevlar

b. Toray carbon

c. AS4 carbon

Figure 16. Radiographs of impact damage in sample from each material group.
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Figure 16. (Continued)
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Figure 17. Typical post-impactdamage in cross-sectionat center of impact site (IM6
carbon reinforcement; impacted on top face).



42

scattered but usually went through the 90* plies and were parallel to the impact load

direction. Also, the cracks appeared to be more prevalent through resin pockets. The size

and location of the delaminations and ply cracks also varied considerably.

At less than 0.2 inches from the center of impact, there was slightly less damage in

each sample. This is clearly shown in Figure 16-b. Cracks and delaminations were still

prevalent. At about 0.3 inches from the center of impact, there was typically more damage.

The damage still consisted of scatteredcracks and delaminations. Delaminations were often

constrained between sections, as shown on the radiographs. At about 0.5 inches from the

center of impact, there was considerably less damage. However, there were still some

cracks and a few delaminations. This damage did not show up on the radiographs.

Static Compression Results

The static stress versus far-field strain response was essentially linear for all

specimens tested. However, immediately before failure, the far-field strain decreased

slightly as the load increased. It is speculated that this decreasing far-field strain

corresponded to a rapid increase in the strain over the damaged area. A typical stress

versus far-field strain curve is shown in Figure 18. Each sample had a transverse shear

failure mode, presumably caused by local fiber instability.

The static compressive properties for all five TTr reinforcements determined from

the stress versus far-field strain curves are shown in Table II. Compressive elastic

modulus and static strength values were calculated using both actual sample thickness and

average thickness of all samples tested.

The average compressive elastic modulus using measured thicknesses was slightly

greater than 10Msi. The Toray carbon sample had an elastic modulus greater than 12 Msi,

nearly 19% higher than average. The modulus of the glass sample, about 11Msi, was also

much higher than average. In contrast, the AS4 carbon sample had an elastic modulus of

about 8.5 Msi, more than 16% lower than average.
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Figure 18. Stress versus far-field strain under static compressive loading (IM6 carbon
TIT reinforcement).
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Table II. Static Compression Results

TIT Elastic Compressive Far-Field

Reinforcement Modulus (Msi) Strength (Ksi) Min. Strain

Act. Thick. Avg. Thick. Act. Thick. Avg. Thick.

Kevlar 29 9.537 9.141 34.366 32.939 0.003491

Toray Carbon 12.021 11.431 33.086 31.463 0.002441

AS4 Carbon 8.459 9.512 35.894 40.364 0.004248

$2 75 1/3 Glass 11.006 10.217 34.825 32.328 0.002804

IM6 Carbon 9.565 9.926 40.118 41.632 0.004006

Avem[_e 10.118 10.046 35.658 35.745 0.003398

Standard Dev. 1.249 0.783 2.405 4.333 0.000688
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The large variations in elastic modulus were caused by differences in material

thickness; the thickest samples had the lowest modulus. Differences in thickness can be

attributed to differences in the size of the TTT reinforcement and to variations in the fiber

volume fraction in each sample. However, even though fiber volume fractions may differ,

all samples contained the same number of 21K AS4 carbon tows in both the warp and fill

yams. And, fiber is the dominant contributor to the strength and stiffness of a laminate.

Therefore, the elastic modulus would not vary from material to material if the thickness did

not vary.

To account for variations in fiber volume fraction, the modulus was calculated

using the average thickness of all the samples tested. The average compressive elastic

modulus using the average thickness was slightly larger than 10 Msi. As shown in Table

II, the Toray carbon specimen had the highest modulus, almost 11.5 Msi (nearly 14%

higher than average). The modulus of both the glass and IM6 carbon samples were close

to average. The AS4 carbon sample and the Kevlar sample each had a modulus lower than

average. The elastic modulus calculated using both the actual and average thicknesses is

shown in Figure 19.

The average post-impact static compressive strength using measured thicknesses

was about 35.5 Ksi. The sample with IM6 carbon TTT reinforcement was considerably

stronger than the others tested; the compressive strength was greater than 40 Ksi. The IM6

carbon sample was more than 16% stronger than the average of the other materials tested.

The Toray carbon sample had the lowest strength, about 33 Ksi. The other three samples

had similar strengths.

In contrast to elastic modulus, compressive strength should vary with differences in

thickness. Increasing the specimen's thickness increases global stability and, thus may

increase the compressive strength. However, additional resin pockets or increased

waviness (possibly caused by large TTT fiber bundles) in the tows would be detrimental to

compressive strength. Resin pockets could cause micromechanical instability in the load-
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Figure 19. Compressive elastic modulus calculated from actual and average thicknesses.
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carrying fibers. This, as well as fiber waviness, could initiate fiber microbuckling at lower

loads. Obviously, causes of thickness variation can lead to differences in compressive

strength. However, there are so many factors associated with different thicknesses that it is

unclearhow thickness differences affect strength.

The strongest sample (IM6 carbon) was also thicker than average. Additionally, the

thickest sample (AS4 carbon) was stronger than the three thinnest samples (Kevlar, Toray

carbon, and glass). When compressive strengths were calculated using average thickness,

the IM6 carbon and AS4 carbon samples were stronger than average. The Kevlar, Toray

carbon, and glass samples were significantly weaker than average. Compressive strength

(calculated with the average thickness) of the two strongest samples was greater than the

strength from actual thicknesses, as shown in Figure 20. Likewise, strength (calculated

with average thickness) of the three weakest samples was less than the strength from actual

thicknesses.

There appears to be some credence in using the average thickness in determining

modulus but not in calculating strengths. Therefore, all subsequent data was calculated

using the actual thickness of each sample.

The average maximum compressive far-field strain was about 3400 micro strain, as

shown in Table II. The AS4 carbon and IM6 carbon samples had the greatest compressive

far-field strain. The maximum compressive far-field strain for the Kevlar sample was near

the average of all samples. The Toray carbon and glass samples had the lowest

compressive strain.

In summary, the IM6 carbon sample had the greatest compressive strength and far-

field strain. The AS4 carbon sample had the lowest modulus. The Toray carbon and glass

samples had the largest compressive modulus and lowest far-field strain. The Kevlar

sample had a nearly average strength,maximum compressive strain, and modulus.
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Tension-Compression Fatigue Results

After the post-impact static compression response was established for all five 'ITr

reinforcement material groups, tension-compression fatigue tests were conducted. Damage

zone growth was monitored in each material. The mechanical response, displacement

across the impact site, of each material was also monitored throughout each test to

quantitatively monitor damage growth.

FatigueLife

Tension-compression fatigue investigations were conducted with the maximum

compressive stress varying from 57% to 79% of the static compressive strength. The

maximum compressive fatigue stress was plotted versus the number of fatigue cycles for

each sample tested. S-N curves are displayed for each of the five TTT reinforcements in

Figure 21. The static compressive strengths were plotted as single cycles fatigue tests.

One infinite life test was conducted for each TTT reinforcement and is indicated by the

arrow extending to the right on the figure. In all cases these samples showed little

indication of damage growth at the end of one million cycles. Each S-N curve includes two

best fit linear relations on the normal-log plot. Linear regressions were determined from

both fatigue data only and from fatigue data with static data. In both cases, data from the

infinite life tests were not used to determine the linear regressions.

For each TTT reinforcement the data points did not significantly deviate from the

linear regression. However, the static compression strengths did not correspond to the

fatigue data. The linear regressions of the fatigue data of the average of all five specimens

tested approximate the static strengths to be about 10%lower than the actual strengths. The

AS4 carbon material had the largest difference between the actual and approximated

strength. A linear regression determined without including the static test approximates the

static strength to be about 27% lower than the actual static strength. The difference

between actual static strength and strength approximated with long-life fatigue data is
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reasonable, because a typical S-N curve for a notched sample is not actually linear. As

shown in Figure 1, the curve drops in the short life region and is nearly linear for longer

life. However, data from the Kevlar tests contradicts this. The linear regression of the

fatigue data approximates the static strength to be almost 5% higher than the actual static

strength. This may indicate that the sample used to determine the static strength was not

representative of the other Kevlar samples.

Figure 22-a shows the S-N response and linear regression including static data for

all TTT reinforcements. The slopes of the regression lines are all similar. This would

indicate that damage grew in a similar manner for all materials tested. Also, the IM6 carbon

samples had a better response than the other materials. However, the significance of this

information is unclear, because the static data probably should not be included in the

regressions for determining fatigue response.

Since the S-N curve for notched samples is nearly linear beyond the short life

region, the regression line determined excluding the static data should more accurately

represent the fatigue response. As shown in Figure 22-b, the slopes of the regression lines

determined from just fatigue data varied considerably between material groups. The

regression of the Kevlar samples had the greatest negative slope, indicating greater

sensitivity to increases in fatigue load levels. In contrast, the AS4 carbon regression had

the smallest negative slope, indicating less sensitivity to increases in fatigue load levels.

The S-N regressions can be more easily compared by contrasting the fatigue stress

levels at zero cycles and at one million cycles. Comparisons of the approximated stress

levels at zero cycles provides information that can be used merely to compare fatigue

response for each material at high stress levels (this is not intended to be a way of

predicting life in high stress level fatigue tests). The IM6 carbon and Kevlar regressions

had the highest stresses at zero cycles, as shown in Table III. This indicates good fatigue

response at high stress levels. The AS4 carbon regression had the lowest zero cycle stress,

nearly 18 % below average. This is indicative of poor fatigue response in the short life
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Table Ill. S-N Regression Data from Fatigue Data for Each TIT Material

TIT Slope Stress at 0 cycles Stress at infinite life

Reinforcement (Ksi/# cycles) (Ksi) (Ksi)

Kevlar 29 -2.659 36.177 20.223

Toray Carbon -1.636 30.846 21.030

AS4 Carbon -0.586 26.337 22.821

$2 75 1/3 Glass -1.129 29.587 22.813

IM6 Carbon -1.926 37.227 25.671

Average -1.587 32.035 22.512

Standard Deviation -0.710 4.098 1.876
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region. The stress levels at infinite life (one million cycles) of the regressions were similar

for most of the materials tested. The IM6 carbon regression had the highest infinite life

stress, about 14% above average. This indicates that the IM6 samples responded well in

the long life region in addition to the short life region. The Kevlar regression had the

lowest infinite life stress. So, although Kevlar responded well at high stress levels, it

responded poorly at lower stress levels.

The IM6 carbon samples clearly had the best fatigue response. The other materials

responded differently under different load levels. For applications that require high load

levels, Kevlar could be a good alternative to IM6 carbon, while AS4 carbon would not.

For applications that require longer life, Kevlar should apparently be avoided.

Since there was little variation of impact damage between materials, the amount of

variation in the S-N data seems to be quite large. The causes of the differences are not

clear. However, there was significant scatter in the S-N data within material groups. The

primary cause of this scatter was probablyvariability in the material from sample to sample.

There were differences in fiber waviness and resin content (voids and resin-rich regions).

The size and position of the _ reinforcing yams may have contributed to these problems.

The shape of the TTT loops (around the catcher yarn) varied considerably. These

variations demonstrate the need for improvements in the production process. Also, more

fatigue testing should be conducted with these materials. The only clear conclusion that can

be drawn is that the IM6 carbon samplesperformed better than the other materials.

Damage Zone Growth

X-radiographic techniques were used to monitor changes in size and shape of the

damage zone. Ten samples were monitored (two from each material group), and the

radiographs are shown in Appendix A. Radiographs throughout a typical fatigue test are

shown in Figure 23. The black areas at the top and bottom of the radiographs represent the

extensometer tabs, and the circular gray areas represent the epoxy used to attach the tabs.
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Figure 23. Radiographs of post-impact fatigue damage from typical test (IM6 carbon TTT
material).
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Early in life, there was little growth in the size of the initial circular damage zones.

As shown in Figure 23-b, at about 21% of life the damage zone was darker and slightly

larger. There were new cracks through the center of the impact site and more delaminations

in the circular region around the center. These darker damage zones indicate that most of

the damage growth occurred through-the-thickness of the sample at the impact site.

However, there were also some new cracks and delaminations extending out of the initial

damage zone.

Late in life, the size of the damage zone grew more rapidly. At about 97% of life,

as shown in Figure 23-c, the damage zone was significantly darker. Additionally, there

was much more damage growth transverse to the loading direction. There was also some

damage growth, in the form of delaminations, in the loading direction. During the initial

96% to 97% of life, damage growth was chiefly restricted to the initial impact-induced

damage zone. Once this initial damage zone was essentially saturated with cracks and

delaminations, the damage grew rapidly away from the impact site and caused failure.

During the final 3% of fatigue life, delaminations and transverse shear failures grew

(from the impact site) in a narrow zone transverse to the loading direction. Figure 23-d

shows the damage zone immediately prior to failure, presumably within the last 0.3% of

life. Each sample that was loaded to failure, had a transverse shear failure mode through-

the-thickness of the laminate, as shown in Figure 24. All the material groups appeared to

grow damage in the same manner. However, the glass material appeared to have damage

zones that were wider in the loading direction than the other materials. Also, the transverse

shear failure did not grow directly from the center of the impact site; the failure extended

from damage that had grownin the fatigue loading direction.

Five samples, one from each material group, were sectioned to determine their

failure modes, as shown in Appendix B. These samples were previously loaded in fatigue

to about 99.9% of life and were sectioned parallel to the loading direction. At the impact

site there were many scattered fiber bundle failures, ply cracks and delaminations. There
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Figure 24. Transverse shear failure mode (Impactedon top face).
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were fiber bundle failures (through their thickness) parallel to the impact load direction, as

shown in Figure 25. Also, a series of fiber bundle failures were scattered in a plane

parallel to the 90* fibers and rotated +45° from the 0° fiber direction. As shown in Figure

25, these failures typically extended through the entire cross-section of each sample. They

were probably the result of local instability and showed the transverse shear failure mode

prevalent in these materials. Away from the impact site, fiber bundle failures, ply cracks

and delaminations were still present. The 45*transverse shear failures often extended far

from the center of the damage zone. They are represented on the radiographs by the long

narrow black regions transverse to the load direction. The 45° failures are assumed to have

been caused by the fatigue loading, while the failures parallel to the impact load direction

are believed to be a result of the impact event.

The failure mechanism appeared to be the same for each material. It was visually

observed that the delaminations typically grew one cell at a time. In other words

delamination growth was constrained by the TIT reinforcing fibers. Under a compressive

load the delaminations opened and exerted tensile loads on the surrounding TTT fibers.

After repeated loading the delaminations grew to neighboring cells; this is believed to have

been caused by transverse shear failures at or near catcher yams or stretching of TTT

reinforcing yams.

In summary, early in life delaminations grew through-the-thickness of the samples

near the impact site. Once the local delaminationswere prevalentenough to reduce the local

stability, the in-plane fibers failed in transverse shear. This process continued until the

impact site was saturated with damage. The failures then rapidly grew transverse to the

loading direction.

The transverse shear failure modes are assumed to have been caused by the

reduction of local stability. There were various differences in the samples that could lead to

differences in the number of cycles before reaching critical instability. Local resin-rich

zones or voids near the in-plane tows or waviness causedby large TIT fiber bundles could
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Figure 25. Typical cross-sectionat center of impact site immediately prior to fatigue failure
(Kevlar reinforcement; impactedon top face).
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reduce the local stability. Additionally, TTT fibers with a low elastic modulus would

stretch more easily when the delaminations open under compressive loading. This would

increase local instability by allowingdelaminations to grow more rapidly between cells (that

were originally constrained by TI_ reinforcing fibers). All of these events could contribute

to increases in local instability, which would cause transverse shear failure.

Sectioning revealed that there were many fairly large pockets of resin, as well as

many voids in the samples tested. Also, there were variations in the waviness of the in-

plane fibers, as shown in Figure 26. The waviness varied throughout each sample,

between samples, and between material groups. The AS4 carbon samples generally

exhibited the largest degree of waviness. This was evidently caused by the large AS4

carbon TIT reinforcing fiber yams. The estimated yam diameter of each _ material is

shown in Table IV. The AS4 carbon yams had the largest diameter, nearly twice that of the

IM6 carbon yams. Toray carbon also had a diameter larger than average, over 40% greater

than IM6 carbon. This probably degraded the materials' fatigue response, especially the

AS4 carbon materials. The samples with IM6 carbon TTT reinforcing fibers had the best

fatigue response, and IM6 carbon had a yam diameter smaller than average.

The fatigue response also appeared to be influenced by elastic modulus. As shown

in Table IV, the Kevlar and glass yams had the lowest modulus. Since both Kevlar and

glass had smaller yam diameters than IM6 carbon, the low modulus may have prevented

these materials from achieving a fatigue response similar to IM6 carbon. The IM6 carbon

yams had the highest modulus. Toray carbon also had a high modulus. This apparently

indicates that optimum fatigue response would be achieved using TTT yams that were

small in diameter and had high modulus.

The tensile strength did not appear to influence fatigue response. Toray carbon had

the highest strength and second highest modulus. Yet, the fatigue response was more

affected, presumably, by the large yam diameter. Also, the material with the smallest yam

diameter, glass, had an above average tensile strengthbut a low modulus. Therefore, large



65

a. AS4 carbon

b. Glass

Figure 26. Waviness of in-plane fibers.
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Table IV. Mechanical Properties of TIT ReinforcingFibers

TIT Estimateda Nominal Nominal

Reinforcement Yam Diameter FilamentModulus Tensile Strength

(inches) (Msi) (Ksi)

Kevlar 29 0.0170 10.2 336

Toray Carbon 0.0241 42.7 1024

AS4 Carbon 9K 0.0334 33.0 580

$2 75 1/3 Glass 0.0139 12.8 683

IM6 Carbon 6Kb 0.0171 43.5 745

Average 0.0211 28.4 674

Standard Deviation 0.0070 14.3 224

a. Kevlar diameter was quoted from manufacturer and had fiber volume fraction of 80%.
Others were estimated assuming 80% fiber volume fraction.

b. Nominal tensile strength given for IM6 carbon 12K.

All other values quoted from manufacturer [48-51].
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yam diameter and low modulus appear to be the main causes of degraded fatigue response.

There may have been other contributing factors, such as fiber volume fraction variations

and the presence of matrix voids. However, since the weaving and epoxy infiltration

processes were the same for all the materials, yam diameter and modulus could be the

controlling influences of fiber microbuckling initiation.

Fatigue Cycles

In addition to determining the S-N response, the stress-strain response of the

materials was monitored periodically throughout each fatigue test. Stress was plotted

versus strain for both the front and back extensometers for selected cycles during each

fatigue test (the front extensometer was mounted over the damage zone on the impacted

face of each sample). Typically, the shape of the stress-strain curves was similar for both

the front and back extensometers. Figure 27 shows the stress-strain response for both

extensometers early in a typical fatigue test.

It was visually observed that there was considerably less damage across the back

face of the sample than across the front face (impacted face). Therefore, as the

compressive load on the sample increased, the front strain (compressive) increased more

than the back strain, which created local bending at the damage site. The sample incurred

the most bending at the maximum compressive strain for each cycle. Figure 28 shows the

maximum compressive strain (over the front and back faces) plotted versus fatigue cycles;

the lines represent discrete data points. The maximumcompressive front strain increased at

a faster rate than the maximum compressive back strain until approximately 80% of life.

After that point, bending decreased dramatically until failure. Although bending varied

greatly from sample to sample throughout each fatigue test, this was a typical response.

The relevance of amount of bending incurred is not clear. Local bending

(determined from extensometer data) is not a direct indicator of damage growth. Global

bending, caused by warped samples or loading misalignment, also influences local

bending. Additionally, measured bending strain was artificially elevated due to the method
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Figure 27. Stress versus strain across front and back faces at impact site for one cycle
early in a typical fatigue test (IM6carbon TIT reinforcement).
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used to attach the extensometers. If it was possible to attach the extensometers directly to

the samples at the neutral surface, no strain due to bending would be measured. However,

due to specimen thickness and tabbing, considerablebending strain was measured.

Yet, this bending data may have provided some meaningful information about

damage and damage growth. Since the maximumcompressive strain across the front of the

sample was greater than the strain across the back during the beginning of each test, the

back faces of the samples did not appear to be significantly affected by impact. Also, the

initial damage seemed to grow through-the-thickness of the samples (from the impacted

face to the back face). This was also shown on the radiographs, as damage intensified in

the impact region.

Stiffness and hysteresis data determined from each extensometer varied

significantly. Therefore, the average strain across the impact site was used to calculate all

subsequent data. Figure 29 shows the stress versus average strain response of a sample at

various cycles throughout a typical fatigue test. The stress-strain response was essentially

linear until approximately 57% of life (cycle # 152,000). The non-linearity then became

more pronounced until failure. The loading and unloading portions of the stress-strain

curves followed essentially the same path until approximately 97% of life (cycle #

262,000). Then, the loading and unloading curves moved apart until failure.

The last few cycles showed the greatest changes in size and shape of the stress-

strain curve. In particular, after experiencing the maximum compressive stress, the

compressive strain continued to increase. This indicates that damage was growing rapidly

and corresponds to the transverse shear failure growth. This is clearly shown in Figure 30

for the last complete cycle before failure.

Changes in size and shape of the stress-strain curve were monitored throughout

each fatigue test by observing changes in hysteresis, maximum and minimum strain, and

moduli. The hysteresis energy (actually strain energy density) is the area enclosed by the

stress versus strain curve. This area was approximated by numerical integration using the
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test (IM6TIT reinforcement).
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trapezoidal rule for successive points. Three moduli were calculated for each cycle, as

shown in Figure 31. The secant modulus is the slope of the line between the maximum

stress and corresponding strain and the minimum stress and corresponding strain. The

unloading modulus is a linear regression of the curve when the sample begins to unload

from the maximum tensile stress. Likewise, the loading modulus is a linear regression of

the curve when the sample begins to load from the maximum compressive stress. The

regressions were calculated for the unloading and loading modulus with twelve and eleven

points respectively. This typically corresponded to a strain range of 300 to 1400 micro

strain.

Figure 32 shows the hysteresis (strain energy density) throughout a typical fatigue

test. The hysteresis was generally small throughout the initial 97% of the test. However,

there was some scatter in these data. This may have been partially caused by the method

used to approximate these values. Additionally, hysteresis is essentially a measure of the

dissipated energy during a fatigue cycle. This may be due to plastic material response and

damage development and growth. It is conceivable that hysteresis energy could increase

and then decrease during a fatigue test. Transverse shear failures and ply cracks would

contribute to increases in hysteresis. The development and growth of this damage is

typically not consistent. This sort of damage propagation could cause slight variations in

the shape of stress-strain curve, even early in fatigue life. Therefore, these slight variations

in hysteresis energy may indicate a changein the damage zone, although not significant.

However, hysteresis increased dramatically within the last 3% of fatigue life.

According to the radiographic data, the majority of the damage growth during the initial

97% of life occurred through-the-thickness of the sample at the impact site, and damage

rapidly grew transverse to the load directionfrom the impact site during the final 3%of life.

This indicates that increases in hysteresis correspond to large increases in damage zone size

(growth away from the impact site) and establish that failure is imminent.
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Figure 33 shows the maximum and minimum average strain throughout a typical

fatigue test. The average maximum strain varied little through the first half of the test.

However, at approximately 54% of the sample's fatigue life, the maximum strain started to

increase slightly. Similarly, the average minimum strain startedto decrease more quickly at

about 54% of the sample's life. There is no obvious correlation between this strain

response and damage zone growth. However, this evidently coincides with the stress-

strain response becoming non-linear. During the final 3% of life, the maximum strain

increased rapidly, and the minimum strain decreased rapidly. Similar to large changes in

hysteresis, large changes in maximum and minimum strain correspond to large growth of

the damage zone.

Figure 34 shows the moduli throughout a typical fatigue test. The secant modulus

gradually decreased for about the first half of the test. At approximately 54% of the

sample's fatigue life, the secant modulus started to decrease more rapidly; again, this

corresponded to a non-linear stress-strain response across the impact site. At

approximately 97% of life, the secant modulus dropped off dramatically. This rapid

decrease continued until failure, depicting rapid damage growth. For this test, the secant

modulus for the last cycle was approximately 24% of the secant modulus at the beginning

of the fatigue test.

The unloading modulus was essentially the same as the secant modulus for each

cycle. However, the unloading modulus had considerably more scatter. This was due to

the small strain range used in the linear regression of the data. There were also inaccuracies

in stress and strain data introduced by the load and displacement recording procedure.

As with the unloading modulus, the linear regression caused scatter in the loading

modulus approximations. However, the loading modulus showed little, if any, change

throughout the fatigue test. There appeared to be no modulus degradation as was the case

with the secant and unloading modulus.
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Damage growth, which corresponds to changes in shape of stress-strain curves, is

represented by changes in moduli. As damage increased, in the form of ply cracks and

transverse shear failures, the stress-strain response under tensile loading was affected

(delaminations would not change the tensile response). Decreases in unloading modulus

represent increases in displacement across the impact site caused by damage growth.

However, damage growth (including delamination growth) occurred chiefly when the

sample was being compressed. At the maximum compressive load delaminations and ply

cracks were opened, and transverse shear failures were pushed together. The loading

modulus measured the stiffness under compressive loading as delaminations and ply cracks

began to close and transverse shear cracks began to open. Changes in secant modulus

represented an average stiffness response to damage growth. Secant modulus was

influenced by all forms of damage growth. Interestingly, the unloading modulus clearly

had the same fatigue response as the secant modulus.

These trends were typical of the fatigue response for each TTT reinforcement, as

shown in Appendix C. By monitoring hysteresis, maximum and minimum strain, and

secant and unloading modulus, throughout a fatigue test, the number of cycles to failure

can be accurately anticipated. Within the final 3% of life, minimum strain and secant and

unloading modulus significantly decrease, while hysteresis and maximum strain increase

significantly. Additionally, the maximum and minimum strain and secant and unloading

modulus also show some variation by about 50% of fatigue life, unlike hysteresis data.

Consequently, life can possibly be estimated earlier by monitoring maximum strain,

minimum strain, secant modulus, or unloading modulus. Changes in both maximum and

minimum strain are inherently incorporated in changes in secant modulus. Therefore,

monitoring the secant modulus offers a simpler approach than monitoring both strains or

the unloading modulus. Consequently, the secant modulus provided the most useful

information in attemptingto anticipate failure.
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Stiffness Loss

Figure 35 shows stiffness (secant modulus) loss throughout the fatigue life of each

sample tested. These curves varied with the number of cycles to failure for each sample.

Yet, the samples all had the same stiffness loss trends, with limited variations. The

stiffness at the beginning of the fatigue tests did vary somewhat. The average initial post-

impact fatigue stiffness for all the samples tested was about 8.8 Msi, as shown in Table V.

The Toray carbon samples had the highest initial post-impact fatigue stiffness,

approximately 9.7 Msi. The AS4 carbon samples had the lowest stiffness, about 8 Msi.

The materials with the largest undamaged static stiffness (from static stress versus

far-field strain data) had the largest initial post-impact fatigue stiffness, as shown in Figure

36. The Toray carbon and glass samples had the greatest reductions (caused by impact

damage) in stiffness, 19% and 17% respectively. The IM6 carbon samples had a stiffness

reduction of about 14%. Also, the Kevlar and AS4 carbon samples had the smallest

stiffness reduction, both about 5%. However, only one static test was conducted for each

material. If the assumption is again made that the TTT reinforcement does not affect

stiffness (and impact damage did not vary between material groups), the average stiffness

for all materials could be used to calculate stiffness reduction. Therefore, the most accurate

representation of the data shows that damage caused from the impact event reduced the

stiffness by about 12% for all the materials tested.

The stiffness loss curves were normalized to compare stiffness loss for samples

with different fatigue lives, as shown in Figure 37. The number of cycles was normalized

with the number of cycles to failure, and stiffness was normalized with the initial post-

impact fatigue stiffness. Interestingly, the stiffness loss curves were similar for all samples

and all TTT reinforcements tested. There were essentially three different stiffness loss

regions, as shown in Figure 38. Typically, there was little stiffness loss in the f£rst50% of

the test. There was significantly more stiffness loss over the next 47% of the test. And,

the stiffness dropped dramatically over the final 3% of the test. Although there was some
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Figure 35. Stiffness loss throughout each fatigue test.
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Table V. Initial Post-Impact Fatigue Stiffnesses

TIT Average Standard

Reinforcement Stiffness (Msi) Deviation (Msi)

Kevlar 29 9.090 0.438

Toray Carbon 9.690 0.535

AS4 Carbon 8.019 0.548

$2 75 1/3 Glass 9.136 0.627

IM6 Carbon 8.243 0.372

Average 8.813 0.804
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material.



88

100

80

Stiffness
(% of Initial) 60, A AI-1[] A2-1

× A2-2
40 /l A2-3

v A3-1
o A6-2

20 O A7-1
_t A7-3

0
0.1 1 10 100

Cycle # (% of life)

a. Kevlar

100

80

Stiffness ×
(% of Initial) 60

[] B2-1
4o × B5-1

B5-3
V B7-1

20 0 B7-2
o B7-3

0 , , , ,,,,,I , , , ,,,,,j ', , , ,,,,,i

0.1 1 10 100

Cycles (% of Life)

b. Toray carbon

Figure 37. Normalized stiffness loss throughout each fatigue test.
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variation between materials, the same trends applied to all material groups. At 50% of life,

the average stiffness was 80% of the initial post-impact fatigue stiffness. At 97% of life,

the average stiffness was 46% of initial. And, immediately prior to failure, the average

stiffness was 23% of initial. The fact that these trends were fairly consistent among and

between material groups verifiesthat fatigue failure couldbe accurately anticipated.

Stiffness loss regions appeared to coincide with three modes of damage growth.

During the initial 50% of life (region 1),damage grew in the form of fiber bundle failures,

ply cracks and delaminations at and near the impact site. The stress versus strain (across

impact site) response was linear in this stiffness loss region. During the next 47% of life

(region 2), damage also grew in the form of fiber bundle failures, ply cracks and

delaminations in the vicinity of the impact site. However, the stress-strain response was no

longer linear, and the stiffness degraded enough to allow significant transverse shear

failures. In the final 3% of life (region 3), the transverse shear cracks rapidly propagated

transverse to the loading direction and caused failure.



CHAPTER_

CONCLUSIONS

Past research showed that TTT reinforcing stitching constrains impact damage and

post-impact fatigue damage growth nearly as well as more expensive tough resin systems.

This study was conducted to compare the response of integrally woven carbon/epoxy

composites with five different TTT reinforcing materials: Kevlar, Toray carbon, AS4

carbon, glass, and IM6 carbon.

The damage caused by intermediate-velocity, low-mass impact was similar for all

five materials. The circular damage zones consisted of delaminations, matrix cracks and

ply cracks. Post-impact fatigue loading also produced similar damage growth for all the

material groups. The stress-strain response (measured across the impact site) was typically

linear during the initial 50% of fatigue life, as delaminations, ply cracks and transverse

shear failures grew at and near the impact site. During the next 47% of life, the stress-

strain response was no longer linear, and damage continued to grow through-the-thickness

of the samples at and near the impact site. Damage grew rapidly transverse to the loading

direction during the final 3% of life and caused transverse shear failure modes.

Damage growth was well characterized by monitoring stiffness loss across the

impact site. The impact event caused an average stiffness reduction by about 12% for all

the materials tested. The post-impact stiffness typically dropped 20% during the initial

50% of life, 34% during the next 47% of life, and 23% during the final 3% of life. By

monitoring stiffness loss, fatigue failure could accurately be anticipated. Also, rapid

increases in hysteresis (strain energy density) occurred during the final 3% of life.

The samples with IM6 carbon TIT reinforcement clearly had the best post-impact

fatigue response. IM6 carbon also had the highest static compressive strength. The
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average static compressive strength and elastic modulus for all materials were about 35.5

Ksi, and 10 Msi, respectively.

The materials evaluated had many inconsistencies. With improvements in

production processes, the variations among material groups may be reduced. The

performance of materials with different TTT reinforcing fibers subjected to post-impact

fatigue loading could then provide additional insight into the damage-constraining

characteristics of TIT fibers. The contributions of the material properties (elastic modulus,

yam diameter, etc.) of the TVI' reinforcing fibers could then be evaluated. Low-cost fibers

with optimum TTT reinforcing capabilities might then be developed. Additional tests

should also be conducted which provide a comprehensivefatigue evaluation of one material

system; these should include variations in impact loading and R ratio, as well as variable

amplitude loading.

However, the results presented herein provide a good evaluation of integrally

woven materials for one fatigue environment with one impact loading condition. This

study provided substantial insight into the post-impact fatigue response of integrally woven

composites with different TrT reinforcing fibers.



APPENDICES
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Appendix A

Impact and Post-impact Fatigue LoadingDamage:
Radiographs

Radiographs were conducted by exposing film to a 37 Kv x-ray flux for 3 min.

The maximum compressive strain across the damage zone increased as the amount of

damage increased. Radiographs were recorded: (a) prior to fatigue loading, (b) at a

maximum compressive strain of 0.005, (c) at a maximum compressive strain of 0.007, and

(d) immediately prior to failure. The cycle number after which each radiograph was

conducted and the percentage of the number of cycles to failure are given for each

radiograph. The maximum compressive stress (Sc) and the number of cycles to failure

(Nf) are given for each sample. Samples are labeled as indicated below.

A3-1

[__ AMPLENUMBERPANELNUMBER

TIT REINFORCEMENT

A - Kevlar29, 1500denier
B - TorayCarbon,T-1000
C - AS4 Carbon,9k
D - $2 75 1/3Glass
F - IM6Carbon,6k



a. 0 cycles (post-impact) b. 446,288 cycles (89.0 % of life)

c. 497,173 cycles (99.2% of life) d. 501,212 cycles (near failure)

Sample A1-1
Sc = 21,650 psi (63.0 % of static), Nf = 501,227 cycles



a. 0 cycles (post-impact) b. 11,463 cycles (68.4 % of life)

c. 16,243cycles (96.9% of life) d. 16,768cycles (last cycle prior to failure)

Sample A7-3
Sc = 24,056 psi (70.0 % of static), Nf = 16,768 cycles



a. 0 cycles (post-impact) b. 95,840 cycles (88.8 % of life)

c. 106,741cycles (98.9% of life) d. 107,903 cycles (near failure)

Sample B5-3
Sc = 22,002 psi (66.5 % of static), Nf = 107,905 cycles



a. 0 cycles (post-impact) b. 43,532 cycles (63.5% of life)

c. 66,927cycles (97.6% of life) d. 68,597 cycles (near failure)

Sample B7-3

Sc = 23,491 psi (71.0 % of static), Nf = 68,597 cycles



_i, __i_ili,i_i_iliii

I I I

a. 0 cycles (post-impact) b. 3,210 cycles (44.7 % of life)

c. 7,020 cycles (97.8% of life) d. 7,181 cycles (near failure)

Sample C2-1
Sc = 22,573 psi (62.9 % of static), Nf = 7,181 cycles



a. 0 cycles (post-impact) b. 6,196 cycles (44.1% of life)

c. 11,879cycles (84.5% of life) d. 13,713 cycles (near failure)

Sample C5-3
Sc = 23,152 psi (64.5 % of static), Nf= 14,053 cycles



a. 0 cycles (post-impact) b. 255,167 cycles (66.2% of life)

c. 383,159 cycles (99.5% of life) d. 385,190 cycles (lastcycle prior to failure)

Sample D5-2
Sc = 24,108 psi (72.9 % of static), Nf = 385,190 cycles



a. 0 cycles (post-impact) b. 11,398cycles (77.3 % of life)

c. 13,803cycles (93.6% of life) d. 14,751cycles (near failure)

Sample D5-3
Sc = 25,458 psi (77.0 % of static), Nf = 14,751 cycles



a. 0 cycles (post-impact) b. 7,433 cycles (20.6 % of life)

c. 34,967 cycles (97.1% of life) d. 36,002 cycles (near failure)

Sample F3-1
Sc = 29,688 psi (74.0 % of static), Nf = 36,002 cycles



a. 0 cycles (post-impact) b. 237,198 cycles (85.4 % of life)

c. 275,145 cycles (99.0% of life) d. 277,146 cycles (near failure)

Sample F3-2

Sc = 28,083 psi (70.0 % of static), Nf = 277,875 cycles
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Ap_ndix B

ImpactandPost-ImpactFatigueLoadingDamage:
Photo-Micrographs

Samples with impact and post-impact fatigue damage were sectioned and

photographed with a magnification of about 4.5. Sectioning locations are shown on

radiographs. The section number and distance to the estimatedcenter of impact (dc) is

given for each photo-micrograph. The maximumcompressive stress (Sc) and the number

of cycles to failure (Nf) are given for each fatiguesample. All fatiguetestswereconducted

at a stress ratio of R = -5 and a frequencyof four hertz. Samples are labeled as indicated

below.

A3-1

L AMPLE NUMBERPANEL NUMBER

TYI' REINFORCEMENT

A - Kevlar 29, 1500 denier
B - Toray Carbon, T-1000
C - AS4 Carbon, 9k
D - $2 75 1/3 Glass
F - IM6 Carbon, 6k
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View
Direction

Section #: 4 3 2 1

4. dc= 0.001" 3. dc= 0.188"

2. dc= 0.328" 1. dc= 0.500"

SampleA4-1
Post-Impact
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_'_ View
Direction

Section#: 4 3 2 1

4. dc= 0.057" 3. dc= 0.229"

2. dc= 0.385" 1. dc= 0.545"

Sample B 1-3
Post-Impact



' 110

Section#:4 3 2 1

4. dc= 0.042" 3. dc= 0.230"

2. dc= 0.407" 1. dc= 0.533"

Sample C5-2
Post-Impact
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_ + _ View
....._ ., _ , _ ' Direction

Section#: 4 3 2 1

4. dc= 0.047" 3. dc= 0.203"

2. de= 0.329" 1. dc= 0.460"

SampleD7-2
Post-Impact
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View
Direction

Section #: 4 3 2 1

4. dc= 0.001" 3. dc= 0.154"

....

2. dc= 0.268" 1. dc= 0.456"

Sample F4-2
Post-Impact
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View '_ _ N
Direction .............._ _:_

I

Section#:1 2 3 4 5 6 7 8

8. dc= 0.116"

7. dc= 0.036"
[

6. dc= 0.236"

SampleA7-3
Sc = 24,056psi (70.0 %of static),Nf = 16,768cycles
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5. dc= 0.482"

4. dc= 0.638"

..... iii¸ iiii i ili_i?:_i_:

3. dc= 0.814"

: i_i!i!i_i_:

2. dc= 0.998"

1. dc= 1.180"

Sample A7-3 (Continued)
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View
Direction

Section#:l 2 3 4 5 6 7 8

_i ¸

8. dc= 0.084"

6. dc= 0.216"

Sample B7-3
Sc = 23,491 psi (71.0 % of static), Nf = 68,597 cycles
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i

5. dc= 0.405"

I

4. dc= 0.500"

2. dc= 0.990"

I iiiii!i:_;_ili!iii ....

1. dc= 1.164"

Sample B7-3 (Continued)
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View
Direction

Section#:1 2 3 4 5 6 7 8

8. dc= 0.168"

7. dc= 0.092"

6. dc= 0.334"

Sample C2-1
Sc = 22,573 psi (62.9 % of static), Nf= 7,181 cycles
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5. dc= 0.554"

4. de= 0.811"

3. de= 0.999"

2. de= 1.215"

1. de- 1.450"

Sample C2-1 (Continued)



119

Section#:8 7 6 5 4 3 2 1

8. dc= 0.013"

7. dc= 0.212"

6. dc= 0.446"

SampleD5-3
Sc = 25,458 psi (77.0 % of static), Nf = 14,751 cycles
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!: :il ¸ / : : _i¸¸¸¸ i

4. dc= 0.799"

2. dc= 1.232"

1. dc= 1.455"

Sample D5-3 (Continued)
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View
Direction

Section#:7 6 5 4 3 2 1

7. dc= 0.062"

6. dc= 0.235"

5. dc=0.440"

Sample F3-1
Sc = 29,688 psi (74.0 % of static), Nf = 36,002 cycles
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4. dc= 0.622"

3. dc= 0.811"

2. dc= 1.016"

1. dc= 1.248"

Sample F3-1 (Continued)
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Appendix C

MechanicalResponse of Post-ImpactFatigue Loading:
Changes in Modulus, Strain, and Hysteresis

Unloading and secant moduli, average maximum and minimum strain, and

hysteresis are plotted versus cycles for each sample. The secant modulus data is presented

as a line so that unloading and secant moduli are more easily distinguished; the line

represents discrete data points. All fatigue tests were conducted at a stress ratio of R = -5

and a frequency of four hertz. Samples which survived one million cycles were considered

to have reached infinite life, and these tests were stopped. The maximum compressive

stress (Sc) and the number of cycles to failure (Nf) are given for each sample. Samples are

labeled as indicated below.

A3-1

SAMPLE NUMBER

PANEL NUMBER

TTI' REINFORCEMENT

A - Kevlar 29, 1500denier
B - Toray Carbon, T-1000
C - AS4 Carbon, 9k
D - $2 75 1/3 Glass
F - IM6 Carbon, 6k
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Sample A2-2
Sc = 21,479 psi (62.5 % of static), Nf = 332,077 cycles
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SampleA1-1
Sc = 21,650 psi (63.0 % of static), Nf = 501,227 cycles
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SampleA7-2
Sc = 20,620 psi (60.0 % of static), Nf = 1,000,000 cycles (infinite)
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Sample B2-1
Sc = 23,161 psi (70.0 % of static), Nf-- 40,748 cycles
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Sample B7-3
Sc = 23,491 psi (71.0 % of static), Nf = 68,597 cycles
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Sample B5-3
Sc = 22,002 psi (66.5 % of static), Nf = 107,905 cycles
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Sample B5-1
Sc = 22,499 psi (68.0 % of static), Nf = 121,544 cycles
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Sample B7-1
Sc = 22,830 psi (69.0 % of static), Nf = 126,071 cycles
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Sample B7-2
Sc = 20,977 psi (63.4 % of static), Nf = 431,774 cycles
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SampleB 1-1
Sc = 19,190 psi (58.0 % of static), Nf = 1,000,000 cycles (infinite)
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Sample C5-1
Sc = 25,915 psi (72.2 % of static), Nf = 46,550 cycles
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Sample C2-1
Sc = 22,573 psi (62.9 % of static), Nf= 7,181 cycles
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Sample C2-3
Sc = 24,408 psi (68.0 % of static), Nf = 9,704 cycles
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Sample C5-3
Sc ""23,152 psi (64.5 % of static), Nf= 14,053 cycles
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Sample C2-2
Sc = 22,613 psi (63.0 % of static), Nf = 58,940 cycles
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Sample C4-2
Sc = 24,474 psi (68.2 % of static), Nf = 113,100 cycles
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Sample C1-1
Sc = 23,331 psi (65.0 % of static), Nf-- 123,507 cycles
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Sample C4-1
Sc = 22,830 psi (63.6 % of static), Nf = 664,218 cycles



148

12'

10 0 0

Modulus 8 0 °000_(Msi)
6 O

4 [ 0 Unl°ading I
-- Secant

2

, i 1 111,I l I 4 • . llll t . . l . • I*1 i . i , llll.l . i • . II.II i . . i . Ill I

0.010-

0.005

0.000
o o ooco oou_m__

Strain
-0.005'

-0.010' [ [] AvgMaxStrainl-o.ol 5. 0 Avg Min Strain

-0.020

100'

80

Hysteresis 60"
(Psi)

40'

20

0
10 100 lOO0 10o0o 10o000 lO00O00 10oo0o0o

Cycles

Sample C1-3
Sc = 21,536 psi (60.0 % of static), Nf = 1,000,000 cycles (infinite)
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Sample D7-3
Sc = 26,119 psi (79.0 % of static), Nf= 1,705 cycles
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Sample D5-3
Sc = 25,458 psi (77.0 % of static), Nf = 14,751 cycles
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Sample D7-2
Sc = 23,520 psi (71.1% of static), Nf = 33,062 cycles
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Sample D6-3
So= 23,682 psi (71.6 % of static), Nc = 131,266 cycles
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SampleD5-1
Sc = 23,143 psi (70.0 % of static), Nf= 185,858 cycles
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Sample D5-2
Sc = 24,108 psi (72.9 % of static), Nf = 385,190 cycles
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SampleF3-1
Sc = 29,688psi (74.0% of static),Nf = 36,002cycles
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Sample F4-2
Sc = 26,878 psi (67.0 % of static), Nf = 68,857 cycles
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Sample F4-3
Sc = 26,917 psi (67.1% of static), Nf = 80,134 cycles
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Sample F3-3
Sc = 26,077 psi (65.0 % of static), Nf = 269,009 cycles
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Sample F3-2
Sc = 28,083 psi (70.0 % of static), Nf = 277,875 cycles
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Sample F2-1
Sc = 23,000 psi (57.3 % of static), Nf = 1,000,000 cycles (infinite)
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